您好!今天是
設為主頁收藏本頁
社交網站:
當前報章2020年08月05日
今日導讀
本報新聞
字體: 放大 還原 縮小
澳大成功研發快速檢測新冠

    【特訊】澳門大學科技學院王百鍵教授及機電工程系博士生晏濤開發一種基於多尺度卷積神經網絡的智能自動診斷系統,能成功區分新型冠狀病毒肺炎和其他常見的肺炎,診斷速度比醫生快將近60倍,為肺炎檢測帶來新的可行方案。該研究剛獲國際科學期刊Chaos, Solitons & Fractals發表。
    新冠病毒肺炎一般通過深喉唾液核酸測試來確認,但核酸測試也存在不少缺點,例如供應不足,費時且假陰性率高等問題,可能導致患者無法及時診斷,更可能導致病毒擴散。目前,眾多專家已建議使用胸部電腦斷層掃描(CT)來診斷可疑病例,因為即使在發病初期,也可以透過胸部電腦斷層掃描來檢測。CT診斷準確性高且可以提供與治理有關的詳盡資訊,但胸部電腦斷層掃描圖像則需要人手識別其特徵,加上患者眾多及每位患者的多次CT掃描皆產生了大量的CT圖像(每次掃描平均產生過百片圖像),這對身處疫情嚴峻地區的放射科醫生來說是一個重大挑戰。
    為此,王百鍵教授及晏濤於疫情初期便與湖北省襄陽市中心醫院放射科的副主任王江濤、醫師任浩、襄陽市第一人民醫院的放射科副主任李陽以及普外科主治醫師王華僑合作研究,取得了這兩間醫院的206個核酸檢測為陽性的個案及他們416組胸部電腦斷層掃描圖像。另一方面,他們在醫院內也取得了412組沒有新型冠狀病毒但只有普通肺炎的胸部電腦斷層掃描圖像。
    基於這些少量CT圖像,研究團隊研發一種基於多尺度卷積神經網絡的自動診斷系統。驗證結果表明,在有限數量的訓練數據下,該智能診斷系統能成功區分新型冠狀病毒肺炎和其他常見的肺炎,其診斷能力與經驗豐富的放射科醫生相當,但診斷速度卻比醫生快將近60倍,這為肺炎檢測帶來新的可行方案。此外團隊還進一步拓展該系統的功能,他們開發的多類肺炎診斷算法及新型冠狀病毒肺炎嚴重性預測算法已接近完成。不久後,該智能系統將可具有區分正常肺部與五種常見肺炎及對新冠病毒肺炎患者進行嚴重性預測的能力。
    研究論文《運用多尺度卷積神經網絡從胸部電腦斷層掃描圖像中自動區分新型冠狀病毒肺炎和普通肺炎》(Automatic Distinction between COVID-19 and Common Pneumonia using Multi-Scale Convolutional Neural Network on Chest CT Scans)剛獲國際科學期刊Chaos, Solitons & Fractals發表,此論文從遞交至正式發表僅用了一個月。Chaos, Solitons & Fractals 是SCI一區期刋。
    論文全文可瀏覽:https://doi.org/10.1016/j.chaos.2020.110153
昔日新聞
June
January
February
March
April
May
June
July
August
September
October
November
December
2025
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
SunMonTueWedThuFriSat
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
1
2
3
4
5
00:00
01:00
02:00
03:00
04:00
05:00
06:00
07:00
08:00
09:00
10:00
11:00
12:00
13:00
14:00
15:00
16:00
17:00
18:00
19:00
20:00
21:00
22:00
23:00
今日推薦
友情鏈接
聯繫我們
Email:sengpou@macau.ctm.net
sengpou888@gmail.com
電話:編輯部 28574294  廣告部 28938387 
 
圖文傳真:28388192 28316404
 
地址:澳門 蓬萊新巷 9號 地下二樓

本報逢週六休假、週日無報 (如遇特殊情況則另行公佈)

如遇颱風,晚上至凌晨時份懸掛8號或以上風球,將停刋一天

特別假期為:1月1日   春節初一、二、三    5月1日   10月2日。
(
 是日休假翌日無報。)

星報首頁 | 昔日新聞 | 各項專版 | 廣告業務 | 報社簡介 | 澳門日記